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Nearest-neighbor distance at a single mobile trap
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We consider a one-dimensional system with an infinite number of identical parfictifusing in the
presence of a single diffusing perfect trBp We study numerically the average distarft@)) from the trap
to the nearest unreactéd and confirm the claim that in the long-time lindit(t) }oct*, wherea is an exponent
depending on the ratio of diffusivitie®, and Dg of the particlesA and the trapB, respectively. We also
confirm the validity of a conjecture for the value @f but show that it should be limited to a specific choice
of the initial distribution of particle®\. [S1063-651X98)03711-9

PACS numbes): 82.20—~w, 05.40+j, 82.20.Hf

A number of recent papers have been devoted to the proldimensionsd=1,2,3[6,8—11], and for a similar model with
lem of finding a quantitative description of the self- a single,mobiletrap B, andimmobileparticlesA for d=1
segregation observed in diffusion-limited bimolecular reac{7]. In the particular case of one-dimensional systems it was
tions[1,2]. Because of the many-body nature of the problemfound that(l(t) )t if the trap is static and particles are
rigorous analysis of the depletion zone formed around thenobile, and(l(t))octl’2 in the opposite case of a mobile trap
reactants is a formidable task, and only phenomenologicaind immobile particle®\. The asymptotic distribution func-
theories and results of numerical simulations are availabléion for {I(t)) was obtained in Ref46,8].

[1,2]. Therefore, analogous to the Smoluchowski approxima- The intermediate, general case of a one-dimensional sys-
tion, which is commonly used in the reaction rate theorytem in which both the tra@ and particlesA are mobile has
[3-5], one often investigates a simplified problem of segre-been studied numerically by Schoonowetral. [12]. This
gation between a single trdpand particlesA surrounding it  conceptually simple extension of the Smoluchowski model
[6—14]. makes its rigorous mathematical treatment very difficult,

In the original Smoluchowski model there is onlgiagle ~ since now the many-body problem cannot be reduced to a
immobile spherical particleB surrounded by a swarm of two-body one, and no analytical method of treating it has
freely diffusing particlesA [3—5]. B is assumed to be a trap been suggested. Schoonovetal. [12] conjectured that
(sink that swallows up anyA that hits its surface asymptotically
(A+B—B), and the reaction rate is computed from the flux

of particlesA into the sphere. The case where the diffusion In{1(t))
constantsD , and Dy of the particlesA and the trapB, re- i I =a, 1)
spectively, are nonzero is then treated using the concept of tow N

the effective diffusion constad’ =D+ Dy applied to the _

above-mentioned system with an immobile tBp Wide-  With

spread use of this grossly simplified model in the literature of

chemical physic$3] suggests the importance of studying its 1

more realistic extensio8-5|. a(D)=—arctariy1+2D), 2
A simple extension of the Smoluchowski model consists i

in allowing the trapB to diffuse. One is tempted to reduce it

to the original Smoluchowski model by working in a coor-

dinate system in which the trap is at rest. However, as was

already pointed out by Noydgl], in this reference system D=Dg/Dp. ©)]

displacements of particles are correlated, since the motion

of the trap changes all of its relative distances to molecéiles The form of Eq.(2) has been suggested based on a heuristic

by the same amount. This effect is most pronounced wheanalogy with an exponent obtained in a related problem of

particlesA arestatig in the coordinate system attached to thethe survival probability of a single particke surrounded by

mobile trap, all of their displacements will be the same, andwo trapsB [15]. It is exact forD=0 andD—c°, yielding

by no means is it obvious that these correlations can be nex=1/4 anda=1/2, respectively. For other values Df, an

glected in an analysis of the depletion zone, especially iragreement with the results of computer simulations has been

low-dimensional systems. claimed. However, the agreement was only qualitative. In
The distribution of particles about the trap in low- fact, the numerical results in Refl2] were consistently

dimensions can be studied througl{t)), the average dis- smaller by about 5% from those predicted by E2). More-

tance between the trdpand the particléA that is nearest to  over, those simulations were performed for relatively small

it. This measure of segregation was calculated exactly for theystems and only for a particular initial condition in which

original Smoluchowski mode(static B and mobileA’s) in particlesA were placed on only one side of the trBp

where
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FIG. 2. The convergence of the exponento the asymptotic
valuea*, computed from Eq(2) for D—o, D=1, andD=0, and
two different initial conditions:(a) particlesA distributed on one
side of the trap ), (b) particlesA distributed on both sides of the
trap (a,). Note thata, does not converge ta* for D=1. The
parameters are;,=10°, L=15001, andN=10 000.

FIG. 1. (a) Comparison of the values of, estimated from simu-
lations, «; for the “one-side” anda, for the “two-side” initial
conditions, respectively, with the values predicted in E)j, de-
noted bya*; (b) the difference betweea; anda, as a function of
D/(D+1). The parameters ate=10°, L>7000, andN=231000.

In this Brief Report we present results of refined simula-
tions of the generalized Smoluchowski model in one dimen£ither on both sides of itthe two-side initial conditio)) or
sion, carried out for longer times and larger systems, for tw@nly for x>0 (the one-side initial condition The initial con-
different initial conditions: the “one-side” initial condition centrationa, of particlesA was equal to 0.8, which is the
where particlesA are placed on one side of the trap, and thevalue used in Refl12]. At subsequent time steps each par-
“two-side” initial state in which particlesA are distributed ticle A, as well as the tra, performed a random jump. The
on both sides of the traB. We find that when both the trap jump length of particles\ was fixed and equal to the lattice
and the particles\ are mobile, the value of is not only ~ constant\,; the jump length of the trap could assume any
nonuniversal, but also depends on the initial conditions. Foralue \g=0 so that we could perform our simulations for
the initial condition studied in Ref12], i.e., when particles ~ arbitrary values oD =Dg/Da=\3/\5. Upon contact with
A are initially deposited on one side of the trap, we show thathe trap, particle®\ immediately reacted and were removed
within statistical errora assumes values close to or even afrom the system. In particular, if the trap was jumping from
little larger than those predicted in E(®). However, in the some Xy to Xg+\g, then it reacted with any particlé
case where they are distributed on both sides of theBrap located at anyxo<x=xp+Ag. To investigate the case
the values ofx become significantly smaller than those pre-D—> we performed a separate set of simulations with a
dicted in Eq.(2). A similar dependence on the initial condi- special algorithm assuming that particlésare immobile
tions was also found in a recent study of a system with §D,=0) and that the trap diffuse®E>0). The simulations
single particle diffusing in the presence of many diffusingwere carried out fot,,,,=10° time steps. For each the
traps[16]. results were averaged over=31 000 independent runs. The

Our computer simulations are based on the cellularnumberL of the lattice sites was chosen to be large enough
automata model of diffusion in one dimensisee Ref[14] to eliminate the boundary effects and varied from 7001 for
for a detailed descriptionAt time t=0 a single traB was D=1 to 38001 forD=100. These values are significantly
placed atx=0, and particlesA were randomly distributed bigger than those employed in Ref[12], where
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N=500, L=2000, anct,,=5000 were used. D=O,1,o_c, and using higher values of time steps and chain
The results of our simulations are presented in Fig).1 €N9t, i.&..tma= 1(°, L=15001, andN=10000. We can

The estimated asymptotic values af for the case where SE€ that these quantities assume almost constant values

particlesA are initially deposited on one side of the trap are(wIthln statistical error quite quickly, especially for smal

h ircl d will be d q h d values ofD, which suggests that extrapolation errors in our
shown as circles and will be denotedas. The correspond-  gimjations are sufficiently small. These figures also show

ing values for the two-side initial condition are depicted asihat the values oft;(t) andas(t) for small values ot tend
squares and will be denoted as. Both a; and a; were  to underestimate their asymptotic values, which explains
calculated for succesive times; for a given valuetdhey  why the values ofa,, obtained in Ref.[12] for time
were determined from the slope oflft)), as a function of t=5000, were smaller than expected.

Int, using the data from the interval/10<r<t. The We suggest that the sensitivity of to the initial condi-
asymptotic values conjectured [ii2] [see Eq(2)] are plot-  tions is related to the fact that in each case the major contri-
ted as a solid line and will be denoted@$. The results are  bution to the ensemble average of the nearest-neightr

plotted as a function db/(D+ 1) to allow for showing data  distance(l(t)) comes from entirely different realizations of
points atD = 0e. For D=0, botha, anda, go to 1/4, and the system. In the case where partickesare distributed on

. one side of the trap, the most important contribution to the
we obtained, =0.252 anda,=0.253; fqu—>oo, both a average comes fror% the systemspin which the trap moves in
and a, converge to 1/2 and we obtainedy=0.496 and e girection opposite to the location of partickeshowever,
a;=0.492. In Fig. 1b) we plot the differencer; —a, as a  if particles A were distributed on both sides of the trap, this
function of D/(D+1) estimated at time¢=1C". It shows  kind of motion would make the trap diffuse deep into a re-
that this difference assumes values much larger than statistision densely occupied by particlés and so the correspond-
cal error(which will be discussed belowand goes to 0 only  ing nearest-neighbor distantg) would be very small. The
asD—0 orD— o, above heuristic argument can easily be extended and used to

Our estimations ofw; and @, can be affected by two prove that, in generaly;= «,. It remains a challenge to find
kinds of errors. The statistical errors, resulting from averaga rigorous relation betweet; and «, for any 0<D <.
ing over a finite number of samplds, can be estimated In summary, we performed extensive simulations of a
using they-square fitting or by performing several indepen- one-dimensional system with a single, mobile, perfect trap
dent simulations with fixed parameters of the system; botfB. interacting with many diffusing particled. We found
methods lead to the conclusion that the accuracy of outhat the value of the exponent, which characterizes the
simulations for a given timeamounts to at least two signifi- asymptotic properties of the distance between the trap and
cant digits. For example, in the caBe=1, the 99% confi- the nearest particld, depends on the initial conditions. Its
dence intervals for; anda,, computed using thg-square ~ conjectured form2) can be used only when particlésare
fitting, gave (0.327,0.333 and (0.291,0.29, respectively, distributed on one s_lde of the trap; in the case where they can
whereas Eq(2) givesa* = 1/3. The other difficulty is related b€ found on both sides &, Eq. (2) overestimates the value
to the fact that we extrapolate the asymptotic valuesepf ©Of a by up to 15%, with the difference diminishing as
and «, using the results obtained for finite values of time D—0 orD—.
To determine the relevance of this factor, in Fig&)2and
2(b) we show the time evolution ofa* —a4(t) and Z K. acknowledges support from the Polish KBN under
a* — ay(t), respectively, for three characteristic values of Grant No. 2 PO3B 059 12.
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