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Nearest-neighbor distance at a single mobile trap
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1Institute of Theoretical Physics, University of Wrocław, 50-204 Wrocław, Poland

2Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
~Received 8 May 1998!

We consider a one-dimensional system with an infinite number of identical particlesA diffusing in the
presence of a single diffusing perfect trapB. We study numerically the average distance^ l (t)& from the trap
to the nearest unreactedA, and confirm the claim that in the long-time limit^ l (t)&}ta, wherea is an exponent
depending on the ratio of diffusivitiesDA and DB of the particlesA and the trapB, respectively. We also
confirm the validity of a conjecture for the value ofa, but show that it should be limited to a specific choice
of the initial distribution of particlesA. @S1063-651X~98!03711-8#

PACS number~s!: 82.20.2w, 05.40.1j, 82.20.Hf
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A number of recent papers have been devoted to the p
lem of finding a quantitative description of the se
segregation observed in diffusion-limited bimolecular re
tions @1,2#. Because of the many-body nature of the proble
rigorous analysis of the depletion zone formed around
reactants is a formidable task, and only phenomenolog
theories and results of numerical simulations are availa
@1,2#. Therefore, analogous to the Smoluchowski approxim
tion, which is commonly used in the reaction rate theo
@3–5#, one often investigates a simplified problem of seg
gation between a single trapB and particlesA surrounding it
@6–14#.

In the original Smoluchowski model there is only asingle,
immobile spherical particleB surrounded by a swarm o
freely diffusing particlesA @3–5#. B is assumed to be a tra
~sink! that swallows up anyA that hits its surface
(A1B→B), and the reaction rate is computed from the fl
of particlesA into the sphere. The case where the diffusi
constantsDA and DB of the particlesA and the trapB, re-
spectively, are nonzero is then treated using the concep
the effective diffusion constantD85DA1DB applied to the
above-mentioned system with an immobile trapB. Wide-
spread use of this grossly simplified model in the literature
chemical physics@3# suggests the importance of studying
more realistic extensions@3–5#.

A simple extension of the Smoluchowski model consi
in allowing the trapB to diffuse. One is tempted to reduce
to the original Smoluchowski model by working in a coo
dinate system in which the trap is at rest. However, as
already pointed out by Noyes@4#, in this reference system
displacements of particlesA are correlated, since the motio
of the trap changes all of its relative distances to moleculeA
by the same amount. This effect is most pronounced w
particlesA arestatic; in the coordinate system attached to t
mobile trap, all of their displacements will be the same, a
by no means is it obvious that these correlations can be
glected in an analysis of the depletion zone, especially
low-dimensional systems.

The distribution of particles about the trap in low
dimensions can be studied through^ l (t)&, the average dis-
tance between the trapB and the particleA that is nearest to
it. This measure of segregation was calculated exactly for
original Smoluchowski model~static B and mobileA’s! in
PRE 581063-651X/98/58~5!/6821~3!/$15.00
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dimensionsd51,2,3 @6,8–11#, and for a similar model with
a single,mobile trap B, and immobileparticlesA for d51
@7#. In the particular case of one-dimensional systems it w
found that^ l (t)&}t1/4 if the trap is static and particlesA are
mobile, and̂ l (t)&}t1/2 in the opposite case of a mobile tra
and immobile particlesA. The asymptotic distribution func
tion for ^ l (t)& was obtained in Refs.@6,8#.

The intermediate, general case of a one-dimensional
tem in which both the trapB and particlesA are mobile has
been studied numerically by Schoonoveret al. @12#. This
conceptually simple extension of the Smoluchowski mo
makes its rigorous mathematical treatment very difficu
since now the many-body problem cannot be reduced t
two-body one, and no analytical method of treating it h
been suggested. Schoonoveret al. @12# conjectured that
asymptotically

lim
t→`

ln^ l ~ t !&
lnt

5a, ~1!

with

a~D !5
1

p
arctan~A112D !, ~2!

where

D[DB /DA . ~3!

The form of Eq.~2! has been suggested based on a heuri
analogy with an exponent obtained in a related problem
the survival probability of a single particleA surrounded by
two trapsB @15#. It is exact forD50 andD→`, yielding
a51/4 anda51/2, respectively. For other values ofD, an
agreement with the results of computer simulations has b
claimed. However, the agreement was only qualitative.
fact, the numerical results in Ref.@12# were consistently
smaller by about 5% from those predicted by Eq.~2!. More-
over, those simulations were performed for relatively sm
systems and only for a particular initial condition in whic
particlesA were placed on only one side of the trapB.
6821 © 1998 The American Physical Society
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In this Brief Report we present results of refined simu
tions of the generalized Smoluchowski model in one dim
sion, carried out for longer times and larger systems, for
different initial conditions: the ‘‘one-side’’ initial condition
where particlesA are placed on one side of the trap, and t
‘‘two-side’’ initial state in which particlesA are distributed
on both sides of the trapB. We find that when both the tra
and the particlesA are mobile, the value ofa is not only
nonuniversal, but also depends on the initial conditions.
the initial condition studied in Ref.@12#, i.e., when particles
A are initially deposited on one side of the trap, we show t
within statistical error,a assumes values close to or even
little larger than those predicted in Eq.~2!. However, in the
case where they are distributed on both sides of the trapB,
the values ofa become significantly smaller than those pr
dicted in Eq.~2!. A similar dependence on the initial cond
tions was also found in a recent study of a system wit
single particle diffusing in the presence of many diffusi
traps@16#.

Our computer simulations are based on the cellu
automata model of diffusion in one dimension~see Ref.@14#
for a detailed description!. At time t50 a single trapB was
placed atx50, and particlesA were randomly distributed

FIG. 1. ~a! Comparison of the values ofa, estimated from simu-
lations, a1 for the ‘‘one-side’’ anda2 for the ‘‘two-side’’ initial
conditions, respectively, with the values predicted in Eq.~2!, de-
noted bya* ; ~b! the difference betweena1 anda2 as a function of
D/(D11). The parameters aret5105, L.7000, andN531 000.
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either on both sides of it~the two-side initial condition!, or
only for x.0 ~the one-side initial condition!. The initial con-
centrationa0 of particlesA was equal to 0.8, which is the
value used in Ref.@12#. At subsequent time steps each pa
ticle A, as well as the trapB, performed a random jump. Th
jump length of particlesA was fixed and equal to the lattic
constantlA ; the jump length of the trap could assume a
value lB>0 so that we could perform our simulations fo
arbitrary values ofD5DB /DA5lB

2/lA
2 . Upon contact with

the trap, particlesA immediately reacted and were remove
from the system. In particular, if the trap was jumping fro
some x0 to x01lB , then it reacted with any particleA
located at anyx0<x<x01lB . To investigate the case
D→` we performed a separate set of simulations with
special algorithm assuming that particlesA are immobile
(DA50) and that the trap diffuses (DB.0). The simulations
were carried out fortmax5105 time steps. For eachD the
results were averaged overN531 000 independent runs. Th
numberL of the lattice sites was chosen to be large enou
to eliminate the boundary effects and varied from 7001
D<1 to 38 001 forD5100. These values are significant
bigger than those employed in Ref.@12#, where

FIG. 2. The convergence of the exponenta to the asymptotic
valuea* , computed from Eq.~2! for D→`, D51, andD50, and
two different initial conditions:~a! particlesA distributed on one
side of the trap (a1), ~b! particlesA distributed on both sides of the
trap (a2). Note thata2 does not converge toa* for D51. The
parameters are:tmax5106, L515 001, andN510 000.
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N5500, L52000, andtmax55000 were used.
The results of our simulations are presented in Fig. 1~a!.

The estimated asymptotic values ofa, for the case where
particlesA are initially deposited on one side of the trap, a
shown as circles and will be denoted asa1 . The correspond-
ing values for the two-side initial condition are depicted
squares and will be denoted asa2 . Both a1 and a2 were
calculated for succesive times; for a given value oft they
were determined from the slope of ln^l(t)&, as a function of
lnt, using the data from the intervalt/10,t<t. The
asymptotic values conjectured in@12# @see Eq.~2!# are plot-
ted as a solid line and will be denoted asa* . The results are
plotted as a function ofD/(D11) to allow for showing data
points atD50,̀ . For D50, botha1 anda2 go to 1/4, and
we obtaineda150.252 anda250.253; forD→`, botha1

and a2 converge to 1/2 and we obtaineda150.496 and
a250.492. In Fig. 1~b! we plot the differencea12a2 as a
function of D/(D11) estimated at timet5105. It shows
that this difference assumes values much larger than sta
cal error~which will be discussed below!, and goes to 0 only
asD→0 or D→`.

Our estimations ofa1 and a2 can be affected by two
kinds of errors. The statistical errors, resulting from aver
ing over a finite number of samplesN, can be estimated
using thex-square fitting or by performing several indepe
dent simulations with fixed parameters of the system; b
methods lead to the conclusion that the accuracy of
simulations for a given timet amounts to at least two signifi
cant digits. For example, in the caseD51, the 99% confi-
dence intervals fora1 anda2 , computed using thex-square
fitting, gave ~0.327,0.333! and ~0.291,0.297!, respectively,
whereas Eq.~2! givesa* 51/3. The other difficulty is related
to the fact that we extrapolate the asymptotic values ofa1
anda2 using the results obtained for finite values of timet.
To determine the relevance of this factor, in Figs. 2~a! and
2~b! we show the time evolution ofa* 2a1(t) and
a* 2a2(t), respectively, for three characteristic values
.
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D50,1,̀ , and using higher values of time steps and ch
length, i.e.,tmax5106, L515 001, andN510 000. We can
see that these quantities assume almost constant va
~within statistical error! quite quickly, especially for smal
values ofD, which suggests that extrapolation errors in o
simulations are sufficiently small. These figures also sh
that the values ofa1(t) anda2(t) for small values oft tend
to underestimate their asymptotic values, which expla
why the values ofa1, obtained in Ref.@12# for time
t55000, were smaller than expected.

We suggest that the sensitivity ofa to the initial condi-
tions is related to the fact that in each case the major con
bution to the ensemble average of the nearest-neighborA-B
distancê l (t)& comes from entirely different realizations o
the system. In the case where particlesA are distributed on
one side of the trap, the most important contribution to
average comes from the systems in which the trap move
the direction opposite to the location of particlesA; however,
if particlesA were distributed on both sides of the trap, th
kind of motion would make the trap diffuse deep into a r
gion densely occupied by particlesA, and so the correspond
ing nearest-neighbor distancel (t) would be very small. The
above heuristic argument can easily be extended and us
prove that, in general,a1>a2 . It remains a challenge to find
a rigorous relation betweena1 anda2 for any 0,D,`.

In summary, we performed extensive simulations of
one-dimensional system with a single, mobile, perfect t
B, interacting with many diffusing particlesA. We found
that the value of the exponenta, which characterizes the
asymptotic properties of the distance between the trap
the nearest particleA, depends on the initial conditions. It
conjectured form~2! can be used only when particlesA are
distributed on one side of the trap; in the case where they
be found on both sides ofB, Eq. ~2! overestimates the valu
of a by up to 15%, with the difference diminishing a
D→0 or D→`.
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